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Abstract

It is common to control access to critical information basedon the need-to-know
principle; The requests for access are authorized only if the content of the requested
information is relevant to the requester’s project. We formulate such a dichotomous
decision in a machine learning framework. Although the costfor misclassifying exam-
ples should be differentiated according to their importance, the best-performing error-
minimizing classifiers do not have ways of incorporating thecost information into their
learning processes. In order to handle the cost effectively, we apply two cost-sensitive
learning methods to the problem of the confidential access control and compare their
usefulness with those of error-minimizing classifiers. We devise a new metric for as-
signing cost to any datasets. From the comparison of the cost-sensitive classifiers with
error-minimizing classifiers, we find that costing demonstrates the best performance in
that it minimizes the cost for misclassifying the examples and the false positive using
a relatively small amount of training data.
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1 Introduction

Securing information from unauthorized accesses is very important in an information-
rich society. For example, project managers want to protecttheir trade secrets from
employees in other departments as well as outsiders. For thepurpose of indexing and
security, confidential information is grouped into containers based on the similarity of
their contents or similar levels of confidentiality. A secure repository (e.g., a secured
database) holds all these containers encompassed by a limited access system. Requests
to access the confidential information may occur, for example, when an employee is
assigned to a new project and needs to access background knowledge. A set of access
control lists (ACL) might be compiled manually to control those requests. Each item
of confidential information is associated with an ACL, whichensures a corresponding
level of security and can be accessed by anyone who has been authorized. However this
approach has a crucial security weakness in that a user who isauthorized to a segment
of confidential information in a container is actually able to access the entire container.
For example, an employee, who is authorized only to look at a progress report on the
development of new technology, is able to access the information about a financial plan
for that project; the two pieces of information are about thesame project and hence are
held in the same container. Therefore the supervisor of the collection of confidential
information will either hand select only those documents that he will let the user see,
or completely bar access to the entire collection rather than risk exposing documents
that should not be exposed.

Furthermore, this approach is inflexible. It does not allow easy adjustment to fre-
quent changes of a user’s task assignment. Project assignments for an employee may
be changed quite often and hence the employee needs to accessconfidential informa-
tion related to the newly assigned project. In addition, access to a previously assigned
project may need to be revoked. In order to ensure that authorized access is granted and
unauthorized access is denied, the ACLs for all informationassociated with the project
must be updated according to the rights and the permissions of employees assigned to
the project.

As a solution for these problems, we developed a multi-agentsystem that han-
dles the authorization of requests for confidential information as a binary classification
problem [13]. Instead of relying on coarse-grained ACLs andhandpicked information,
our system compares the content of requested confidential information with the con-
tent of the requester’s project and authorizes the request only if the two are relevant. In
the case of either acceptance or rejection, the event can be logged for security audits
and alarms. By doing this, our system allows the supervisor ameans of specifying
subsets of per-user and per-task access control policies and a way to automatically en-
force them. Since the proposed system learns the supervisor’s decision criteria based
on a small number of supervisor-provided examples, the supervisor need not identify
all relevant information. Through our proposed system, it then becomes possible for
the supervisor to define, assign, and enforce a security policy for a particular subset of
confidential information.

Although our approach showed a relatively good performance[13], we believe
there is a room for improvement. Previously we made use of fivedifferent error-
minimizing classifiers for authorizing the requests to access confidential information.
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We believe that we can improve our results by taking into consideration the cost caused
by misclassification. In particular, it is undesirable to use an error-minimizing classi-
fication method, which treats all mis-classification costs equally, for this scenario be-
cause primarily it classifies every example as belonging to the most probable class. For
example, suppose that there are 100 medical records that areactually comprised of 5
cancer records and 95 cold records. Without considering thecost for misclassification
(i.e., diagnosis), an error-minimizing classifier could simply achieve the lower error
rate by ignoring the minority class, even though the actual result of misdiagnosis on
cancer is far worse than that of cold (e.g., the cost will be really high).

In this paper we would like to test the effectiveness of cost-sensitive learning for
the problem of confidential access control. Section 2 compares cost-sensitive classifi-
cation with error-minimizing classification in terms of theoptimal decision boundary
and details two approaches for cost-sensitive learning. Section 3 describes three differ-
ent classification methods as candidates for the process of confidential access control.
Section 4 describes experimental settings and empirical evaluation of cost-sensitive
learners. Section 5 presents related work and section 6 presents conclusions and future
work, respectively.

2 Cost-Sensitive Classification

In the previous section, we mentioned briefly the reason why acost-sensitive classifier
is better suited for the problem of confidential access control than an error-minimizing
classifier. This section formalizes the principle in terms of the optimal decision bound-
ary for a binary classification task with univariate data.

2.1 An Illustrative Example

A classification method is a decision rule to assign one of (ormore than one) predefined
classes to given examples. Some of them produce a continuousoutput whereas others
produce a discrete class label. The optimal decision boundary is a decision criteria that
allows a classifier to produce the best performance.

Let us consider a hypothetical example in figure 1 which showstwo classes with
overlapping boundaries due to their intrinsic randomness –their actual values are ran-
dom variables. In this example, the probability density foreach class is normal, that is,
p(class = 0|x) ∼ N(µ0, σ

2
0) andp(class = 1|x) ∼ N(µ1, σ

2
1)1.

If the cost for misclassification is equal, where is the optimal decision boundary
(xe∗) for a binary classification? Assuming that we know how two probability densities
are distributed, it is relatively easy to compute the optimal decision boundary. Formally,
let P be the probability of class 1 given an examplex.

P (x|class = 1) = P (x|class = 0)

P = 1 − P

P = 0.5

1µ0 = 0.3500, σ0 = 0.1448, µ1 = 0.7000, σ1 = 0.1736
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Figure 1: The optimal decision boundary for a binary classification will be determined
by considering the misclassification cost.

The probability of an examplex belonging to class 1 is 0.5, meaning that the optimal
decision boundary lies in the center of two class distributions (i.e.,xe∗ = 0.52). There-
fore an example randomly generated will be assigned to class1 if its value is greater
than 0.52. The solid line represents this optimal decision boundary, assuming the cost
for misclassifying is equal.

Pivoting the optimal boundary, a classifier could have four possible classification
outcomes; “a” is “true positive” that an example,x, belongs to “class 1” and it is
classified as “class 1.” “c” is “false negative” ifx is classified as “class 0.” “d” is
“true negative” ifx belongs to “class 0” and is classified as “class 0.” Finally, “b” is
“false positive” ifx is classified as positive [10]. Table 1 captures this information as
well as the cost (λij ) involved in those four outcomes. Particularly,λij is the cost for
classifying an example belonging toj asi.

It is reasonable to evaluate the performance of a classifier by computing the area
under the regions’ boundaries. In particular, the true areafor class 1 is the sum of “a”
and “c.” If a classifier produces results like those in table 1(e.g., “a” and “b” for “class
1” and “c” and “d” for “class 0”), then the false negative of this classifier is roughly
15% (i.e., percentage of “c” out of the whole area of “class 1”) and the false positive is
10% (i.e., 10% of class 0), respectively.

Where then would be the optimal decision boundary if the costfor misclassifying
is unequal. Let us assume that text documents belonging to “class 0” and “class 1”
are confidential information of which careless release may have a damaging effect.
An employee is newly assigned to a project for which records are stored in a secured

trueclass = 1 trueclass = 0
outputclass = 1 a (λ11) b (λ10)
outputclass = 0 c (λ01) d (λ00)

Table 1: Four possible outcomes and their costs for a binary classification are presented.
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repository and are labeled as “class 1.” Since the documentsbelonging to “class 0”
are about different projects, the employee is supposed to access to only documents in
“class 1” for understanding background knowledge of the project.

Assuming that no cost is assigned to the correct classification (λ11 = λ00 = 0), the
costs for two errors should be considered carefully for providing a reliable confidential
access control; false negative (λ01) – reject the valid request (e.g., reject the request
that the employee asks to access a “class 1” document by predicting the requested
document as “class 0”); false positive (λ10) – accept the invalid request (e.g., accept
the request that the employee asks to access a “class 0” document by predicting the
requested document as “class 1”). As the results from such invalid authorizations,
a false negative causes the employee to be inconvenienced because he is not able to
access need-to-know information. However, not approving valid requests does not
cause a serious problem from the security perspective. On the contrary, a false positive
is a serious problem because confidential information, which should not be revealed,
can be accessed. Therefore, for a need-to-know basis confidential authorization, the
cost for false positive is much higher than that of false negative. Thus it is reasonable
to re-locate the decision boundary for uniform-cost (i.e.,solid line in the figure 1),
in order to minimize the cost for misclassifications. For example, if the cost of false
positive is higher than that of false negative, the decisionline should be moved toward
to the right (i.e.,xR∗). Two dashed lines in the figure 1 represent the optimal decision
boundaries for non-uniform misclassification cost assigned to each example.

However a tradeoff must be considered because choosing one of the extremes (e.g.,
xL∗ or xR∗ ) will sacrifice the error that is not considered. In particular, the classifier
could reduce the false negative close to zero if we would choosexL∗ as a decision
line, but with higher false positive. If either of extremes is not the solution, the opti-
mal decision line should be chosen somewhere between extremes by considering the
tradeoff:

cost1P (y = 1|~x) = cost2P (y = 0|~x)

cost1P = cost2(1 − P )

cost1P = cost2 − cost2P

P =
cost2

cost1 + cost2

2.2 Wrappers for Cost-Sensitive Classification

In the problem of unequal misclassification cost, the example space is optimally divided
into |C| regions so that classj is the optimal (i.e., least-cost) prediction in regionj. The
goal of cost-sensitive learning is to find the boundary between these regions. Obviously
the misclassification cost, particularly a loss matrix (e.g. table 1), is the dominant factor
for the optimal boundaries. That is, the region wherej must be predicted will expand
at the expense of the regions of other classes if misclassifying examples of classj is
more expensive relative to misclassifying others, even though the class probabilities
remain unchanged.

There have been two major approaches for cost-sensitive learning. The first one is
a glass-box approach that modifies particular error-minimizing classifiers cost-sensitive
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[1], [16]. The second one is a black-box approach that converts arbitrary error-minimizing
classifiers into cost-sensitive ones [19], [2].

In this paper, we utilize two methods in the black-box approach for cost-sensitive
learning: costing [19] and metacost [2]. A black-box approach for cost-sensitive learn-
ing makes any error-minimizing learning method carry out cost-sensitive learning. In
particular, they make use of sampling techniques that change the original example dis-
tributionD to D̂ by incorporating into it the relative cost of each instance.Then they
make any cost-insensitive error-minimizing classifiers perform expected cost mini-
mization on the newly generated distribution,D̂. According to a given cost matrix,
this changes the proportion of a certain class by re-sampling of the original examples
instead of modifying the learner’s rule.

2.2.1 Costing

Costing (cost proportionate rejection sampling with aggregation) is a wrapper for cost-
sensitive learning that trains a set of error-minimizing classifiers by a distribution,
which is the original distribution with the relative cost ofeach example, and outputs
a final classifier by taking the average over all learned classifiers [19]. It assumes
that changing the original example distributionD to anotherD̂, by combining it with
the cost information, makes any error minimizing classifieraccomplish expected cost
minimization on the original distribution. Costing is comprised of two processes: re-
jection sampling and bagging. Rejection sampling has been used to generate indepen-
dently and identically distributed (i.i.d.) samples that are used as a proxy distribution
to achieve simulation from the target distribution. To thisend, it requires a density
functiong(x) and a constantM > 1, satisfying the “envelope property”

π(x) ≤Mg(x)

Given the a density functiong(x) satisfying the “envelope property”, rejection sam-
pling works as follows: drawx from g(x) and a sampleu from a uniform distribution
U, ∀u ∈ [0, 1] and acceptx if u < π(x)

Mg(x) . Otherwise reject the value ofx and repeat
the sampling step [11]. The accepted values are regarded as arealization ofπ(x). In
particular, suppose we run the samplingN times, and can estimateµ by using theN
accepted samples because those samples are i.i.d. samples fromπ(x).

Rejection sampling for costing assigns each example in the original distribution
with a relative cost2 and draws a random numberr ∈ [0, 1] from a uniform distribution
U . It will keep the example ifr > c

Z
. Otherwise it discards the example and continues

sampling until a certain criteria is satisfied. The acceptedexamples are regarded as a re-
alization of the altered distribution,̂D, D̂ = {S

′

1, S
′

2, ..., S
′

k}. With the altered distribu-
tion, D̂, costing trainsk different hypotheses,hi ≡ Learn(S

′

i), and predicts the label

of an test example,~x, by combining those hypotheses,h(~x) = sign
(

∑k
i=1 hi(~x)

)

.

2x̂i =
c

Z
× xi, wherec is a cost assigned toxi andZ is maxc∈S c.
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2.2.2 Meta-costing

The MetaCost is another method for converting an error-minimizing classifier into cost-
sensitive classifier by re-sampling [2]. The underlying assumption is that an ordinary
classifier for error-minimization could learn the optimal decision boundary based on
the cost matrix if each training example is relabeled with the cost. The learning process
of MetaCost is comprised of two processes: bagging and retraining the classifiers with
cost. In particular, it generates a set of samples with replacement from the training
set and estimates the class of each instance by taking the average of votes over all
the trained classifiers. Then the MetaCost re-labels each training example with the
estimated optimal class and re-trains the classifier to the relabeled training set.

R(i|~x) = argmin
j

{P (j|~x)C(i, j)}

whereR(i|~x) is the expected cost of predicting that~x belongs to theith class and
P (j|~x) is the Bayes optimal classification.

3 Binary Classification For Supporting Critical Deci-
sion

Our goal is to develop a reliable process for confidential access control based on the
need-to-know principle; the request for access to a unit of confidential information is
accepted only if the content of the requested item is relevant to the requester’s task. It
is reasonable to verify whether or not the content of a requested confidential item is
associated with the content of a requester’s project because the requester only needs
to know information related to his/her project in order to conduct the given task. In
other words, a request for confidential that the requester does not “need to know” is
undoubtedly rejected. To this end, we model such a dichotomous decision (i.e., to re-
ject or accept the request) in a machine learning framework.We choose four different
classification methods, linear discriminant analysis, logistic regression, support vec-
tor machines, and naive Bayes classifier, because of their relative good performance,
particularly in text classification [5], [12], [14], [9].

3.1 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a well known method instatistical pattern
recognition that projects the observed patterns into a low dimensional space in which
the classes are well separated [6]. In particular, LDA produces an optimal linear dis-
criminant functionf(x) = WT

x which maps the input example into the classification
space in which the class identification of this sample is decided based on some metric
such as Euclidean distance and Mahalanobis distance. A typical LDA implementation
is carried out via scatter matrix analysis. We compute the within and between-class
scatter matrices as follows:

Sw =
1

M

M
∑

i=1

P (Ci)Σi (1)
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Sb =
1

M

M
∑

i=1

(µi − µ)(µi − µ)T (2)

whereµi andΣi is the mean vector and covariance matrix of theith class,Sw is the
within-class scatter matrix showing the average scatterΣi of the sample vectors~x
of different classCi around their respective meanµi, Sb is the between-class scatter
matrix, representing the scatter of the conditional mean vectorsµi’s around the over-
all mean vectorµ. Various measures are available for quantifying the discriminatory
power, the commonly used one being [6]:

J(W ) =
||WTSwW ||

||WTSbW ||

whereW is the optimal discrimination projection and can be obtained via solving the
generalized eigenvalue problem:

SbW = λSwW

The distance measure used in the matching could be a simple Euclidean or Maha-
lanobis. However for our case – a binary classification whether a document belongs
to the need-to-know confidential or not – Euclidean distanceis used because the max-
imum rank ofSb is |C| − 1, where|C| is the number of classes, meaning that LDA
cannot produce more than|C| − 1 features. LDA has been used in [12] as a text clas-
sification method and in [14] as a feature selection method.

3.2 Logistic Regression

Logistic regression is a statistical technique for modeling a binary response variable by
a linear combination of one or more features, using a logit link function

P (class = 1|w,x) = ψ
(

w
T
x
)

,

where,

ψ(wT
x) =

exp(wT
x)

1 + exp(wT x)
=

1

1 + exp−wT x

The Bayesian approach to the logistic regression assumes gaussian priors,p(class =
0|x) ∼ N(µ0, σ

2
0 (andp(class = 1|x) ∼ N(µ1, σ

2
1). In order to find the Maximum A

posterior Probability (MAP) estimate ofw:

L(w) = arg max
j

{P (wj |D)}

= arg max
j

{

P (wj)

n
∏

i=1

1

1 + exp(−wT
j xiyi)

}

= arg max
j

{

lnP (wj) −
n
∑

i

ln(1 + exp(−w
T
j xiyi))

}

whereP (~w) is the prior on~w andn is the number of the training examples.
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3.3 Support Vector Machines

Support Vector Machines (SVMs) learns the parametersw andb specifying a linear
decision ruleh(x) = sign(w · x + b), so that the smallest distance between each
training example and the decision boundary (i.e., margin) is maximized [15]. It works
by solving the following optimization problem:

minw,b,ξ
1
2w

T · w + C
∑n

i=1 ξi

subject to ∀i, yi

(

w
Tφ(xi) + b

)

≥ 1 − ξi, ξi ≥ 0

Here training vector,xi, is mapped into a higher dimensional space by the functionφ.
Then SVM finds a linear separating hyperplane with the maximal margin in this higher
dimensional space.C > 0 is the penalty parameter of the error term. The constraints
require that all examples in the training set are classified correctly up to some slack
variableξi. If a training example lies on the wrong side of the decision boundary, the
correspondingξi is greater than 1. Therefore,

∑n
i=1 ξi is an upper bound on the number

of training errors. The factorC is a parameter that allows one to trade off training error
and model complexity.

3.4 Naive Bayes Classifier

A Bayesian learning framework assumes that the examples were generated by a para-
metric model and uses training data to compute Bayes-optimal estimates of the model
parameters. With these estimates, it classifies new test examples using Bayes’ rule to
calculate the posterior probability that a class would havegenerated the test example
in question. Then classification is carried out by selectingthe most probable class. In
addition to this framework, the naive Bayes classification assumes that all attributes of
the examples are independent of each other given the contextof the class.

The naive Bayes classifier we used is a multinomial model thatrepresents an ex-
ample as the set of attribute occurrences from the training set. It is assumed that the
individual attribute occurrences to be the “events” and theexample to be the collection
of attribute events. It is known to perform better than a multi-variate Bernouli model,
where an example is regarded as “event” that is consisted of the absence or presence of
attributes, because of capturing the frequency of the attributes [9].

Naive Bayes classifier predicts the classcj that maximizes the posterior probability,
P (cj |x), for an example vectorx, under the attribute independence assumption.

P (c|xi) = arg max
j

{P (cj)P (xi|cj)/P (x)}

= arg max
j

{P (cj)P (xi|cj)}

= arg max
j







P (cj)

|A|
∏

k=1

P (ak|cj)
ni,k







= arg max
j







logP (cj) +

|A|
∑

k=1

logP (ak|cj)
ni,k
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= arg max
j







log P̂ (cj) +

|A|
∑

k=1

ni,k log P̂ (ak|cj)







where|A| is the total number of attributes,ni,k is the frequency of thekth attribute in

theith example,P̂ (cj) =
X(cj)

X
, andP̂ (ak|cj) =

1+nj,k

|A|+
∑

k∈|A|
nj,k

.

Although the assumption on the feature independence is unrealistic in a real-world
problem, the naive Bayesian classification has been shown tobe surprisingly effective
and is computationally efficient [9]. In other words, training such a classifier only
requires time that is linear in the number of features and data instances, meaning that
they do not use word combinations as predictors and are thus far more efficient than
the exponential non-Bayes approaches.

4 Experiments

As we described earlier, the scenario which we are particularly interested in is a process
of confidential access control based on the need-to-know principle. The purpose of the
experiments is two-fold; to find a good classification methodthat minimizes the cost
and the false positive rate while holding the false negativerate reasonably low; to verify
that the wrappers for cost-sensitive learning reduce the total cost loss in comparison
with error-minimizing classifiers. From these objectives,three performance metrics
are primarily used to measure the usefulness of classifiers;false negative, defined as
fn = c

a+c
by using the values in the table 1, false positive,fp = b

b+d
, and cost for

misclassification. These metrics are better matched to our purpose than conventional
measures based on precision-recall because we are interested in primarily reducing the
error and the cost. Moreover, two error measures are not sensitive to changes of class
frequency whereas the precision and recall are sensitive tothe frequencies of the target
classes [4].

Since there are no datasets available that are comprised of confidential information,
we choose the Reuters-21578 document collections for experiments. This data set,
which consists of world news stories from 1987, has become a benchmark in text cate-
gorization evaluations. It has been partially labelled by experts with respect to a list of
categories. These categories have been grouped into super-categories of people, topics,
places, organisations etc. The category distribution is skewed: the most common cate-
gory has a training-set frequency of 2,877, but 82% of the categories have less than 100
instances and 33% of the categories have less than 10 instances. There are 135 overlap-
ping topic categories. Since it is a binary classification task where each document has
an exclusive category (i.e., either positive or negative),we discarded documents that
are assigned no topic or multiple topics. Moreover, classeswith frequencies less than
10 are discarded. The resulting data set is comprised of 9,854 documents as a training
set and 4,274 documents as a test set with 67 classes (topics).

Each document is represented by a multi-dimensional vectorof which size is de-
termined by the size of the vocabulary and its element corresponds to a word in the
vocabulary. The vocabulary was constructed by discarding stop words, too frequent
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words, and rarely occurring words3 without stemming. After these processes, the size
of the original vocabulary (i.e., a set of unique unigrams) was reduced to 7,114 from
23,918. In order to reduce the dimensionality further, we tested three different feature
selection methods such asχ2 statistics, information gain, and point-wise mutual infor-
mation. We found the performance ofχ2 method best. This replicates results reported
in other research works [18], [17]. The dimension of the feature space is finally set to
1,000. Previous work on the Reuters-21578 dataset showed that such a drastic reduc-
tion of the feature space’s dimension does not degrade the performance [5], [9]. Each
document is then represented by using those selected 1,000 words and their weights
are computed by:

wi,k =

(

tfi,k

tfi,k + 0.5 + 1.5 × dli
ave dl

)

×

(

log2

N

dfk

+ 1.0

)

wheretfi,k is the frequency of thekth word in theith document,dli is theith document
length,ave dl is the average document length in the training documents,N is the total
number of training documents,dfk is the document frequency of thekth word. The
final size of the word-by-document matrix is1000×9854, which is reasonably smaller
than the original matrix,7114 × 9854. For succinct representation of this matrix, we
tested two different techniques for dimension reduction: principal component analysis
(PCA) and LDA/PCA. Since there is a noticeable performance difference between two
techniques in representing 90% of the total variance4in the covariance matrix, we used
PCA alone for concise representation of the word-by-document matrix.

The experimental setting is as follows. All the documents are regarded as confi-
dential and accordingly they are kept in a secured container, ensuring that authorized
users are only allowed to access. Documents belonging to theselected category are
regarded as confidential information that the requester needs to know. Conversely the
rest of test documents are confidential information that should not be revealed. A false
positive occurs when the system accepts a request that should have not been accepted
whereas a false negative occurs when the system rejects a request that should have been
accepted. From the security perspective, it is more tolerable to have an authorization
process with a high false negative rate than one with a high false positive rate.

4.1 Cost Assignment

According to the class assignment – not the original category label, but the artificially
assigned class label, such as need-to-know confidential or otherwise (simply, positive
or negative) – each of the documents in both the training and testing sets is assigned by
a cost, ensuring that the mis-classification cost of a need-to-know confidential informa-
tion is higher than that of remaining confidential (i.e.,λ10 > λ01, λ10 > λ00, λ01 >
λ11) [3]. Otherwise unreasonable assignment of cost leads a classifier to always predict

3This is done by removing words if their document frequency isless than a threshold of “rarely occurred”
(e.g., 3) or is greater than the threshold (e.g., 500) of “toofrequent.”

4D̂ = ~eT

k
D, where,D̂ = k × n, D = m × n, k � m, k =

λi
∑

j
λj

≥ 90% of variance in

Σ,Σλ = ~eλ.
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the dominant class, regardless of what the true class is. In particular, let us assume that
the cost of first row in the table 1 is greater than that of the second one (i.e.,λ1j ≥ λ0j ).
A classifier then always predicts “class=0” regardless of its learned rules (e.g., posterior
probability distribution).

Since the Reuters-21578 document collection does not have cost information, we
devised a heuristic for cost assignment. It complies with our idea; firstly, there is a
cost involved in incorrect classification; secondly, the higher cost is assigned to a false
positive than a false negative. Particularly, the cost for misclassifying a document,di,
is computed by:

cost(di) =







[s, s+ |cj |] if di ∈ cj and cj = positive
[

0,

∑

s∈positive
cost(ds)

|number of negative documents|

]

Otherwise

wheres = ln
(

N
|cj|

)

× 100,N is the total number of documents and|cj | is the number

of documents belonging to thejth category. The total cost for misclassification is added
to the cost of confidential documents misclassed if a classifier is not able to predict any
of the positive cases, in order to prevent the case that a low cost is simply achieved
by ignoring the class with a low frequency. For example, there are 10 out of 10,000
documents belonging to the positive class. The cost assignment ensures that the total
cost for misclassifying those 10 examples should be either equal to or higher than that
of the remaining documents5. This heuristic method is intended to prevent the case
that a low cost can be achieved simply by ignoring the minority class. In particular,
there are 10 examples out of 10,000 examples belonging to thepositive class. The cost
assignment ensures that the total cost for misclassifying those 10 examples should be
either equals to or higher than that of remaining documents6 When this is the case, a
low error rate can be achieved simply by ignoring the confidential class. In particular,
a dumb classifier will achieve 99% accuracy by simply predicting all documents as
negative and it will pay a half of the total cost for its incorrect classification. Obviously
this should be avoided. To this end, the total cost for misclassification is added by
the cost of confidential documents misclassified if a classifier is not able to predict
any positive cases. The previous dumb classifier will be paying 13815.6 because it
classifies all positive examples incorrectly, even though it does all negative examples
correctly. The total cost is computed by summing the misclassification cost of positive
and negative examples. The cost for misclassifying positive case will impose to a
classifier if it is only able to classify all non-confidentialcorrectly. It is reasonable that
a classifier, which predicts the label of all positive documents incorrectly and does all
negative correctly, will be eventually paying the same amount of cost paid by another
classifier that classifies all documents incorrectly.

This assignment method works for both cost assigned for eachexample and cost
assigned for each case (e.g., false alarm and miss). For the per example cost-sensitive

5For this case, the cost for misclassifying a positive document is 690.67 (ln
(

9990

10

)

× 100 = 690.6755)
and the sum of the cost is 6906.755 (690.6755× 10). Accordingly the cost of misclassification of a negative
document is 0.6913 (6906.755

9990
= 0.6913) and the cost sums to 6906.087.

6For this case, the cost for misclassifying a positive document is 690.78 and the sum of the cost is 6907.8
(690× 10). Accordingly the cost of misclassification of a negativedocument is 0.6914 and the cost sums to
6907.8.
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Figure 2: A pair of of false positive (filled bar) and false negative (empty bar) for
“livestock” category is presented.

learning, the misclassification cost should be paid when a positive is classified as a
negative. For the previous example, the cost for false alarm(i.e.,λ10 in the table 1) is
690.67 whereas the cost for miss (i.e.,λ01) is 0.6913, respectively.

4.2 Experimental Results

We choose the five different categories as representative categories according to their
category frequencies: small (livestock and corn), medium (interest), and large (acq and
earn). There are 70 % of documents in a category used as “training” and the remaining
30 % documents are used for “testing”, respectively. There are nine different classifiers
tested: LDA, LR, and SVMs, and the combination of those threeclassifiers with two
wrappers for cost-sensitive learning: metacost (MC) and costing7. A binary classifier
was trained for each of the selected categories by considering the category as positive
with the rest of the data as negative examples. We made use of the LIBSVM8 and
tested three different kernels, such as linear, polynomial, and Gaussian. The Gaussian
kernel (width = 1

max feature dimension) was chosen due to its best performance and the
different cost factors are assigned9,C = 10 ∼ 100. Those values are chosen optimally
by 10-fold cross validation.

The experimental results are primarily analyzed by “false positive,” “false nega-
tive,” and “cost.” The procedure of experiments is as follows: firstly, pick one of five
selected categories; secondly, assign the cost to each of examples according to its im-
portance using the heuristic described in section 4.1; then, train each of nine classifiers
by training examples with cost; finally compute three performance measure by using
the contingency table.

Figure thru 2 to 6 show pairs of false positive and false negative for each of the

7The results of naive Bayes classifiers were removed due to itspoor performance.
8http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
9The cost of constrain violation is set to 100 if there are relatively small amount of positive examples

available. Otherwise it is set to about 10.
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Methods livestock (114) corn (253) interest (513) acq (2448) earn (3987)
SVM 13967 66453 54065 83141 108108

SVM (w/ costing) 4035± 30 8851± 52 9058± 159 40009± 252 96007± 331
SVM (w/ mc) 7147± 50 23596± 64 32011± 321 194165± 451 228612± 453

LR 35809 32759 60031 349080 710631
LR (w/ costing) 484± 11 1333± 44 29614± 110 606± 145 2521± 191

LR (w/ mc) 34980± 35 32759± 79 60374± 154 386859± 1185 788819± 263
LDA 2638 66453 124733 591300 908690

LDA (w/ costing) 1461± 28 6092± 89 7301± 152 39354± 205 41478± 159
LDA (w/ mc) 40079± 57 45778± 71 8955± 157 51789± 285 54084± 244

Cost for base line 42625 79084 139113 591357 1090498

Table 2: The cost by nine different classifiers are presented. The values in bold face
are the best for corresponding category.

selected categories by nine different classifiers, which are numbered from the left to
right: SVM (1), SVM with costing (2), SVM with metacost (3), LR (4), LR with
costing (5), LR with metacost (6), LDA (7), LDA with costing (8), and LDA with
metacost (9), respectively.

Except the “interest” category, LR with costing showed the best results that mini-
mize false positive while holding false negative low. In particular, for the “livestock”
category, LR trained by only 18% training data (i.e., 1781 out of 9854 documents) re-
sulted 0% false positive and 2.8% false negative rate. For the costing, we carried out
five different sampling trials for each category (i.e., 1, 3,5, 10, and 15) and represented
the trial for the best performance. For this category, a newly generated distribution by
10 rejection sampling trials is used to achieve this result.Each resampled set has only
about 178 documents. LDA with costing showed the smallest error for the “interest”
category that is comprised of 5.6% false positive and 4.5% false negative.

Table 2 replicates this trend in terms of the total cost for misclassification. The
number in parenthesis next to topic name is the total number of text documents belong-
ing to that category. The results reported for costing and metacost are the average of 5
different runs. The bottom line entitled “cost for base line” is the cost for a category if a
classifier classifies all the testing examples incorrectly (e.g., a classifier for “livestock”
category will cause 42625 for misclassification cost if it classifies all incorrectly). For
the “earn” category, LR with costing caused only 0.002 out ofthe total cost (2521 out
of 1090498). For the remaining categories, the best-performer paid only less than 0.05
out of the total cost.

From the comparison with error-minimizing classifiers, thecosting proved its ef-
fectiveness in that it requires relatively small amount of training data for a better perfor-
mance. For the “corn” category, LR with costing, which only used 10% of the training
data (i.e., 986 out of 9854 documents) showed the best resultin terms of the smallest
loss (1333 out of 79084), zero false positive, and lower false negative rate (0.039). The
LR classifier was trained by a sample set by three rejection sampling trials that is com-
prised of 458 positive and 528 negative examples. The smallest loss implies that it is
expected to pay 1.1% of the total loss caused by incorrect confidential access control
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(i.e., misclassification). From the false positive perspective (zero false alarm), you do
not worry at all about the leaking of confidential information. 39% false negative rate
means that there would be 39 out of 1000 valid requests to the confidential information
that are mistakenly rejected. This inconveniences employees because they have to ac-
cess particular information for their projects, but the system does not authorize. This
trend holds good for the remaining four categories.

The primary reason that makes costing effective is its ability to generate a sample
that is comprised of nearly even number of positive and negative examples. For ex-
ample, each resampled set for the “interest” category has only about 500 documents
(actually ranging from 502 to 555). Ranging about 55% to 60% of the documents in
each set are positive, even though on the original dataset itwas only 3.6% (513 out
of 14,128). Moreover it takes relatively less time to train the classifier with costing
because sample set is far smaller than the original trainingexample. However this
property hindered the performance of SVM because its performance is sensitive to a
skewed class distribution, even with regularization (i.e., assigning a higher cost factor,
C = 100). In other words, it is difficult for a SVM to find the optimal hyperplane sepa-
rating two classes if the size of one class is relatively smaller than the others. The result
in table 2 confirmed this hypothesis in that the more trainingexamples are available for
SVM without wrappers, the less cost it is paid (e.g., from 32%(13967 out of 42625)
for “livestock” category to 10% (108108 out of 1090498) for “earn” category).

Another reason, we believe, that the cost resulted in good performance is that our
method for assigning cost distinguished well positive fromnegative examples. By
assigning at least more than 100 times cost to positive examples, it helps the costing
choose the more important examples as sample.

The metacost did not show a good performance because there might be overfitting
caused by a random resampling with replacement. To avoid such overfitting, one might
think a resampling without replacement where an instance,x, is drawn from a distri-
bution and the next sample is drawn from the setS − x. However this approach also
fails because it keeps the size of the original distributionsmaller and eventually there
is nothing left to be chosen.

5 Related Work

As many data mining techniques have been applied to various real-world application
domains, the usefulness of the cost-sensitive learning drew attention from the public.

Lee and his colleagues [7] introduced a cost-sensitive framework for the intrusion
detection domain and analyzed cost factors in detail. Particularly, they identify the
major cost factors (e.g., costs for development, operation, damages and responding to
intrusion) and then applied a rule induction learning technique (i.e., RIPPER) to this
cost model, in order to maximize security while minimizing costs. However their cost
model should be changed manually if a system’s cost factors are changed.

Maloof [8] utilized two sampling methods, such as under- andover-sampling for
efficient learning of skewed data set. The under/over sampling are stratification tech-
niques that generate a set of samples from the original data according to a certain
criteria [2]. In the under-sampling, all instances of the classj with highestP ′(j) are re-
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tained, and a fractionP ′(i)/P ′(j) of the examples of each other classi is chosen at ran-
dom for inclusion in the resampled training set, whereP ′(j) = C(j)P (j)/

∑

j C(j)P (j)
andC(j) =

∑

iC(i|j). C(j) is the cost of misclassifying an instance of classj, irre-
spective of the class predicted. In the over-sampling, on the contrary, all examples of
the classj with lowestP ′(j) are retained, and then the examples of every other class
i are duplicated approximatelyP ′(i)/P ′(j) times in the training set. Both sampling
methods have drawbacks; the under-sampling reduces the amount of data available,
which might cause the increase of cost whereas the over-sampling avoids the loss of
training data but may significantly increase learning time.Moreover these techniques
are only applicable when there is a slight difference in the class frequency. In our
case, these two techniques resulted in the following distribution of five selected topics;
under-sampling: livestock (114→ 0.35), corn (253→ 3.23), interest (513→ 5.46),
acq (2448→ 1278.68), earn (3987→ 3987) andover-sampling: livestock (114→
9844.61), corn (253→ 89809), interest (513→ 617137), acq (2448→ 35452826),
earn (3987→ 110543424). Since there are too few examples available for training by
under-sampling whereas there are too many examples to computationally process by
over-sampling, we did not apply those two methods to our scenario.

Fan and his colleagues [16] proposed a new method called “AdaCost” for reduc-
ing misclassification cost using boosting. In particular, the idea is to take an unequal
care for examples according to their cost while learning rule – by assigning high initial
weights to costly weights and by updating rule in taking costinto account. Their ap-
proach is similar to the costing in that the performance is improved by averaging (i.e.,
weighted bagging vs bagging). The finding in comparison of AdaCost with AdaBoost
by “Chase credit card data ” is quite similar to ours – AdaBoost reduces misclassifica-
tion error significantly but does not reduce cost for misclassifying.

6 Conclusion and Future Work

In this paper we test the effectiveness of cost-sensitive learning for confidential access
control. The goal of this work is to develop a reliable process for confidential access
control based on the need-to-know principle; the request for access to a unit of confi-
dential information is accepted only if the content of the requested item is relevant to
the requester’s task. We model such a dichotomous decision (i.e., to reject or accept
the request) in a machine learning framework. A false positive occurs when the system
accepts a request that should not have been accepted whereasa false negative occurs
when the system rejects a request that should have been accepted. For both errors, the
system pays the cost for misclassification. From the security perspective, the cost for a
false positive is more expensive than that of false negativebecause the former is a seri-
ous security problem because confidential information, which should not be revealed,
can be accessed.

In order to achieve our goal we need to find a classifier that minimizes the cost
and false positive rate while holding false negative rate reasonable row. We utilized
two wrappers for cost-sensitive learning because the best-performing error-minimizing
classifiers do not concern unequal cost for misclassification. From the comparison of
the cost-sensitive learners with the error-minimizing classifiers, we found that costing
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showed the best performance. In particular, it requires farless training data for much
better results, in terms of the smallest cost paid, the lowest false positive rate, and the
lower false negative rate. The benefit of smaller training data is two-fold; First, obvi-
ously it takes less time to train the classifier; Second, it enables a human administrator
to conveniently identify arbitrary subsets of confidentialinformation, in order to train
the initial classifier.

Since we found our metric for cost assignment useful, as future work, we would
like to generalize this idea. In this work, we primarily focused on testing this frame-
work for the text domain. We would like to investigate the usefulness of this approach
in different type of media, such as image, video, etc. Although to our knowledge, the
machine learning approach is a novel one for access control,it would be very inter-
esting if we compare the effectiveness of our framework withconventional document
management systems (e.g., ACL-based systems).
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Figure 3: A pair of of false positive (filled bar) and false negative (empty bar) for
“corn” category is presented.

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Figure 4: A pair of of false positive (filled bar) and false negative (empty bar) for
“interest” category is presented.
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Figure 5: A pair of of false positive (filled bar) and false negative (empty bar) for “acq”
category is presented.
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Figure 6: A pair of of false positive (filled bar) and false negative (empty bar) for “earn”
category is presented.
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